

Tandem O—H Insertion/[1,3]-Alkyl Shift of Rhodium Azavinyl Carbenoids with Benzylic Alcohols: A Route To Convert C-OH Bonds into C-C Bonds

Pengbing Mi, Rapolu Kiran Kumar, Peigiu Liao, and Xihe Bi*, †, ‡

Supporting Information

ABSTRACT: Alcohols are among the most abundant and commonly used organic feedstock in industrial processes and academic research. The first tandem O-H insertion/[1,3]-alkyl shift reaction reported is between benzylic alcohols and rhodium azavinyl carbenoids derived from N-sulfonyl-1,2,3triazoles, which provides a strategically novel way of cleaving C-OH bonds

and forming C-C bonds. The substrate scope is broad, capable of covering 1°-, 2°-, and 3°-benzylic alcohols. Moreover, it constitutes a new and powerful synthetic method for constructing α -aminoketones. Mechanistic studies suggest that a [1,3]-alkyl shift of oxonium ylides is responsible for cleavage of the C-OH bonds.

arbon-carbon bond-forming reactions are prevalent and of fundamental significance in the field of synthetic chemistry. The utility of the "green" alcohols as the starting materials for forming carbon-carbon bonds is attracting massive attention, because they are among the most abundant, inexpensive, and environmentally benign chemicals. Instead of the traditional carbocation strategy,2 dependence on the transition-metal catalysis has significantly expanded the horizon of this area in the past few decades. Many impressive strategies have emerged, for example, the ruthenium-catalyzed dehydrative C-H functionalization of alcohols,3 the TM-catalyzed arylation/alkylation of benzyl alcohols with Grignard or arylboronic reagents, the TM-catalyzed C-alkylation of ketones and secondary alcohols with alcohols by the borrowing of a hydrogen process,⁵ sequential O-H insertion/[3,3]- or [2,3]sigmatropic rearrangement of rhodium carbenoids with alcohols, and the palladium-catalyzed allylic alkylation of ketones with allylic alcohols.⁸ While these studies provide variable routes to exploit alcohols in C-C bond-forming reactions, the limited scope of alcohol substrates still remains a major drawback in applying these methods in synthetic practice.3-8 Consequently, development of new alcohol-based C-C bond-forming reactions, especially those expanding the repertoire of the alcohols that can be used, is still a longstanding research goal.

Rhodium carbenoid insertion into O-H bonds, followed by sigmatropic rearrangement, has received considerable attention as an effective method for the cleavage of C-OH bonds to form C-C bonds. 6,7,9 These reactions are believed to proceed, mechanistically, via tandem formation of an oxonium ylide and sigmatropic rearrangement. Both [3,3]- and [2,3]-sigmatropic rearrangements have been utilized in such a reaction sequence, especially with applications in natural product synthesis. 6a,b,10 The groups of Wood, 6a-d Mukarami, 6e Fokin, 6f and Lee 6g have

made leading contributions to the development of methods for O-H insertion/[3,3]-sigmatropic rearrangement (Figure 1a),

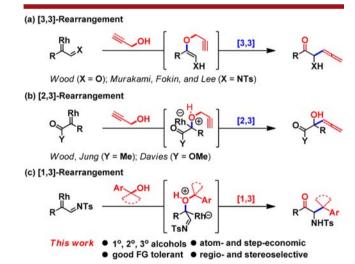


Figure 1. Tandem O-H insertion/sigmatropic rearrangement of rhodium carbenoids with alcohols.

while the [2,3]-sigmatropic rearrangement has been mainly exploited by Jung,^{7a} Wood,^{7b} and Davies^{7c-h} (Figure 1b). Apparently, the dependence of either allylic or propargylic alcohols is necessary in all of these reactions. Therefore, expansion of this elegant strategy to general alcohols remains a hard task. The thermal [1,3]-alkyl shift of vinyl ethers was known in 1896 in the seminal report of Claisen¹¹ and recently

Received: August 17, 2016 Published: September 23, 2016

[†]Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China

[‡]State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Organic Letters Letter

further developed by means of transition metal catalysis ¹² or Brønsted acid catalysis. ¹³ In comparison with [3,3]- and [2,3]-sigmatropic rearrangement, the [1,3]-alkyl migration is less developed. ⁹ Here, we for the first time have incorporated a [1,3]-alkyl shift into the C–OH bond cleavage of alcohols by a strategically novel O–H insertion/[1,3]-alkyl shift reaction of benzylic alcohols with rhodium azavinyl carbenoids which were derived from N-sulfonyl-1,2,3-triazoles (Figure 1c). ¹⁴ Notably, 1°-, 2°-, and 3°-alcohols are all suitable for this reaction. To the best of our knowledge, this is the first [1,3]-alkyl shift reaction developed directly starting from alcohols. In addition, this reaction constitutes a new and powerful synthetic method for the synthesis of α -aminoketones. ¹⁵

After identifying the optimal conditions (for details, please see the Supporting Information), we then explored the reaction scope with regard to *N*-sulfonyl-1,2,3-triazoles (Scheme 1). *N*-

Scheme 1. Scope of N-Sulfonyl-1,2,3-triazoles^{a,b}

"Conditions: 1 (0.75 mmol), 2 (0.5 mmol), $Rh_2(Oct)_4$ (2 mol %), 4 Å MS (100 mg), toluene (3 mL), 120 °C, under N_2 , 10 h. ^bIsolated yields.

Tosyl-1,2,3-triazoles substituted at C4 with a phenyl ring containing electron-donating or -withdrawing groups all afforded high yields of products (3a–3g, 78–93%). *N*-Tosyl-1,2,3-triazoles containing a fused aryl ring, such as naphthyl (3h, 88%), or an aliphatic cyclic system, such as cyclohexenyl (3i, 91%), also smoothly participated in the target reaction. Furthermore, variation of the sulfonyl units of 1,2,3-triazoles did not affect the reaction efficacy (3i–3m, 89–93% yields).

We next explored the scope of alcohols. As illustrated in Scheme 2, 3°-benzylic alcohols with electron-withdrawing (4b and 4c) and electron-donating groups at the o/m/p positions were well tolerated (4a, 4d-4f, 63-91%). Bulky tertiary alcohols, such as naphthyl (4g), fluorenyl (4h), and 1,1diphenylethanol (4i), also smoothly underwent the target reaction to offer excellent product yields (81-92%). Furthermore, benzylic alcohols bearing aliphatic rings, such as cyclopentane (4j), cyclohexane (4k), and cyclobutane (4n), proved to be suitable. The structure of 4n was further confirmed by single-crystal X-ray analysis. Similarly, a range of 2°-benzylic alcohols were reactive and resulted in the corresponding products in moderate-to-high yields (5a-5i, 41-81%). Next, the reaction scope was expanded to 1°benzylic alcohols, which delivered the desired products (6a-6c), albeit in slightly decreased yields (51-68%). Alcohols derived from benzofuran (6d, 63%) and indole (6e, 81%) were also suitable for the target reaction.

Scheme 2. Scope of Alcohols^a

 $^a\mathrm{Conditions:}~1~(0.75~\mathrm{mmol}),~2~(0.5~\mathrm{mmol}),~\mathrm{Rh_2(Oct)_4}~(2~\mathrm{mol}~\%),~4~\mathrm{Å}$ MS (100 mg), toluene (3 mL), 120 °C, under N₂, 10 h. $^b\mathrm{Isolated}$ yields. $^c\mathrm{The}$ dr values were identified by HPLC analysis.

To develop an asymmetric version of this reaction, we tested a series of chiral rhodium catalysts, including $Rh_2(S-BNP)_{4}^{16}$ $Rh_2(S-DOSP)_{4}^{17}$ and $Rh_2(S-nttl)_{4}^{18}$ but no satisfying results were obtained. Therefore, we considered achieving high stereoselectivity by chiral induction using a chiral alcohol. Pleasingly, the alcohol (R)-1p (97% ee) produced the product 5a' with high dr and ee values (dr = 10.7:1, ee >99%).

All α -aminoketone products structurally contained a benzylic motif at the α -carbon, thus providing a handle for further synthetic derivation. We investigated the cyclization under various conditions and eventually achieved the conversion of these α -aminoketones into tetrahydroisoquinolines 7 via reaction with dimethoxymethane in the presence of H_2SO_4 at 90 °C (Scheme 3). The isoquinoline structure was

Organic Letters Letter

Scheme 3. Synthetic Utility of the Products^{a,b}

^aReaction conditions: 3 (0.5 mmol), dimethoxymethane (0.5 mL), $\rm H_2SO_4$ (0.5 mL) at 90 °C. ^bIsolated yields.

unambiguously confirmed by single-crystal X-ray analysis of product 7a. Notably, 1,2,3,4-tetrahydroisoquinoline is a privileged structure in many biological and medicinal compounds such as Solifenacin, a commercial antimuscarinic drug.²⁰

We performed extensive experiments to elucidate the reaction mechanism (Scheme 4). First, we sought to identify

Scheme 4. Mechanistic Investigations

the source of the oxygen and hydrogen atoms in the products. A reaction using the oxygen isotope-labeled alcohol [18 O]-1j gives β -aminoketone [18 O]-4i (eq 1). Trace amount of water in the solvent was ruled out as the source of the oxygen atom through an experiment with H_2^{18} O, which afforded a H_2 O-insertion product, [18 O]-8, as in Mukarami's report (eq 2). These results suggest that the hydroxyl group of the alcohol is the source of the oxygen atom in the β -aminoketones. A reaction with deuterium-labeled triazole [D]-2a offered product [D]-3a, and equivalent quantities of deuterium were observed in both compounds (eq 3). Control experiments validated the

83%

5e. 0%

involvement of the rhodium catalyst in the [1,3]-sigmatropic rearrangement step (eqs 4–6). The β -oxyenamine 9 was prepared separately and then subjected to the standard reaction conditions, which delivered 3a in 91% yield, whereas the reaction without the rhodium catalyst afforded the thermal dissociation products 8 (63%) and 10 (63%), along with 3a in small amounts (23%). Finally, a competition experiment was conducted by adding diphenylmethanol to the rearrangement reaction of 9, which led to 3a in 83% yield, without formation of the cross-reaction product 5e. This result further suggests that the rhodium-catalyzed rearrangement of intermediate 9 occurs through an intramolecular process.

Based on these results and related precedents, ^{6,7,12} a plausible mechanism is proposed (Scheme 5). Initially, *N*-sulfonyl-1,2,3-

Scheme 5. Plausible Mechanism

triazole 2a is converted to the α -diazo imine intermediate A via ring—chain tautomerization. This conversion is followed by reaction with the rhodium catalyst to afford α -imino rhodium carbenoid intermediate B, along with release of molecular nitrogen. Alcohol 1a then adds to the electrophilic carbene center of B to generate zwitterionic intermediate C. Then, intermediate C released the rhodium to form the vinyl ether intermediate C which then undergoes a rhodium-induced C0 lakely shift to give product C1.

In conclusion, we have developed a practical, general method for the construction of C–C bonds using alcohols and rhodium carbenoids, generated in situ from N-sulfonyl-1,2,3-triazoles. In contrast to the [2,3]-alkyl shifts typically observed with conventional rhodium carbenoids derived from α -diazocarbonyl precursors, and the [3,3]-alkyl shifts observed for rhodium azavinyl carbenoids derived from N-sulfonyl-1,2,3-triazoles, these reactions proceed via an unusual formal [1,3]-alkyl migration pathway. In addition, this atom-economic reaction provides a useful tool for the synthesis of a range of densely functionalized α -aminoketones.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b02459.

Experimental procedures and spectra copies (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: bixh507@nenu.edu.cn.

Notes

The authors declare no competing financial interest.

Organic Letters Letter

ACKNOWLEDGMENTS

This work was supported by the NSFC (21522202, 21502017, 21372038), the Ministry of Education of the People's Republic of China (NCET-13-0714), the Jilin Provincial Research Foundation for the Basic Research (20140519008JH), Fundamental Research Funds for Central Universities (2412015BJ005, 2412015KJ013, 2412016KJ040), and the Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (No. 130028658).

■ REFERENCES

- (1) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Meijere, A., Eds.; Wiley-VCH: Weinheim, 2004.
- (2) Emer, É.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 2011, 647.
- (3) (a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613. (b) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. J. Am. Chem. Soc. 2012, 134, 7325. (c) Walton, J. W.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51, 12166
- (4) (a) Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. *J. Am. Chem. Soc.* **2012**, *134*, 14638. (b) Cao, Z.-C.; Yu, D.-G.; Zhu, R.-Y.; Wei, J.-B.; Shi, Z.-J. *Chem. Commun.* **2015**, *51*, 2683. (c) Cao, Z.-C.; Luo, F.-X.; Shi, W.-J.; Shi, Z.-J. *Org. Chem. Front.* **2015**, *2*, 1505.
- (5) For a recent review, see: Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.
- (6) For selected examples, see: (a) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J. J. Am. Chem. Soc. 1995, 117, 10413. (b) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J.; Pflum, D. A.; Petsch, D. T. J. Am. Chem. Soc. 1997, 119, 9641. (c) Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748. (d) Chen, J.-H.; Levine, S. R.; Buergler, J. F.; McMahon, T. C.; Medeiros, M. R.; Wood, J. L. Org. Lett. 2012, 14, 4531. (e) Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 3883. (f) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. J. Am. Chem. Soc. 2014, 136, 195. (g) Jung, D. J.; Jeon, H. J.; Lee, J. H.; Lee, S.-g. Org. Lett. 2015, 17, 3498.
- (7) (a) Jung, M. E.; Pontillo, J. Org. Lett. 1999, 1, 367. (b) Moniz, G. A.; Wood, J. L. J. Am. Chem. Soc. 2001, 123, 5095. (c) Li, Z.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 396. (d) Parr, B. T.; Li, Z. J.; Davies, H. M. L. Chem. Sci. 2011, 2, 2378. (e) Li, Z. J.; Parr, B. T.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 10942. (f) Li, Z. J.; Boyarskikh, V.; Hansen, J. H.; Autschbach, J.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 15497. (g) Chepiga, K. M.; Feng, Y.; Brunelli, N. A.; Jones, C. W.; Davies, H. M. L. Org. Lett. 2013, 15, 6136. (h) Parr, B. T.; Davies, H. M. L. Org. Lett. 2015, 17, 794.
- (8) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. **2014**, 53, 6776.
- (9) For reviews, see: (a) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B. M. Angew. Chem., Int. Ed. 2014, 53, 2556. (b) West, T. H.; Spoehrle, S. S. M.; Kasten, K.; Taylor, J. E.; Smith, A. D. ACS Catal. 2015, 5, 7446.
- (10) (a) Tamaki, K.; Shotwell, J. B.; White, R. D.; Drutu, I.; Petsch, D. T.; Nheu, T. V.; He, H.; Hirokawa, Y.; Maruta, H.; Wood, J. L. Org. Lett. 2001, 3, 1689. (b) Drutu, I.; Krygowski, E. S.; Wood, J. L. J. Org. Chem. 2001, 66, 7025.
- (11) Claisen, L. Ber. Dtsch. Chem. Ges. 1896, 29, 2931.
- (12) (a) Harada, N.-a.; Nishikata, T.; Nagashima, H. Tetrahedron 2012, 68, 3243. (b) Kona, C. N.; Patil, M. N.; Ramana, C. V. Org. Chem. Front. 2016, 3, 453. (c) Vidhani, D. V.; Cran, J. W.; Krafft, M. E.; Manoharan, M.; Alabugin, I. V. J. Org. Chem. 2013, 78, 2059.
- (d) Kona, C. N.; Ramana, C. V. Chem. Commun. 2014, 50, 2152.
- (e) Nasveschuk, C. G.; Rovis, T. Org. Biomol. Chem. 2008, 6, 240.
- (13) (a) Tayama, E.; Otoyama, S.; Isaka, W. Chem. Commun. 2008, 4216. (b) De, C. K.; Mittal, N.; Seidel, D. J. Am. Chem. Soc. 2011, 133,

- 16802. (c) Tayama, E.; Horikawa, K.; Iwamoto, H.; Hasegawa, E. *Tetrahedron* **2013**, *69*, 2745.
- (14) For reviews, see: (a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, S1, 862. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, S2, 1371. (c) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151. See also: (d) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (e) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13, 3746. (f) Jeon, H. J.; Jung, D. J.; Kim, J. H.; Kim, Y.; Bouffard, J.; Lee, S.-g. J. Org. Chem. 2014, 79, 9865. (g) Park, S.; Yong, W.-S.; Kim, S.; Lee, P. H. Org. Lett. 2014, 16, 4468. (h) Miura, T.; Nakamuro, T.; Hiraga, K.; Murakami, M. Chem. Commun. 2014, 50, 10474
- (15) DiRocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904.
- (16) McCarthy, N.; McKervey, M. A.; Ye, T.; McCann, M.; Murphy, E.; Doyle, M. P. Tetrahedron Lett. 1992, 33, 5983.
- (17) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972.
- (18) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. J. Am. Chem. Soc. 2009, 131, 18034.
- (19) Durola, F.; Sauvage, J. P.; Wenger, O. S. Chem. Commun. 2006, 171.
- (20) Ko, Y.; Malone, D. C.; Armstrong, E. P. Pharmacotherapy 2006, 26, 1694.
- (21) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 194.